
Fragment-based Conformant Planning

James Kurien
Palo Alto Research Center
3333 Coyote Hill Road,

Palo Alto, CA 93404
jkurien@parc.com

P. Pandurang Nayak
Stratify, Inc.

501 Ellis Street
Mountain View, CA 94043.

nayak@stratify.com

David E. Smith
NASA Ames Research Center

MS 269-2,
Moffett Field, CA 94035
desmith@arc.nasa.gov

Abstract

With complex systems such as spacecraft, we often need to
achieve goals even though failures prevent the exact state of
the system from being determined. Conformant planning is
the problem of generating a plan that moves a system from
any of a number of possible initial states to a goal state, given
that actions may have uncertain outcomes and sensing is un-
available. Two existing approaches to conformant planning
are to consider the effects of actions in all worlds simulta-
neously, or to generate a plan in one world and test it in the
remaining worlds. In contrast, in this work we attempt to
find a plan for one world and extend it to work in all worlds.
This approach is motivated by the desire to find conformant
plans when one exists and partially conformant plans when
one does not. It can be implemented with many underlying
planning approaches and search strategies, and can be used in
an anytime manner. We show that on a familiar conformant
planning domain this approach is competitive with all but the
fastest planners on serial problems and dominant on problems
where a parallel plan is required.

Introduction
With complex systems such as spacecraft, we are often faced
with situations where we need to achieve goals even though
there are faults present. Unfortunately, these systems are
only partially observable, or observations may be costly. For
example, sensors dedicated to measuring the internal state
of spacecraft are usually quite minimal due to power and
weight constraints. Thus, if we diagnose a fault aboard a
spacecraft, we might do no better than finding a small set
of failures that are equally likely given the limited set of
observations. Our problem then is that we need to generate
plans that achieve goals even though the exact failure that
occurred, and thus the exact state of the spacecraft, cannot
be determined. This is aconformant planning problem.

Conformant planning is a generalization of deterministic
planning wherein the task is to generate a plan that moves
a system from any one of a number of possible initial states
to a state that satisfies a goal predicate. In addition, actions
may have uncertain outcomes and sensing actions are not
available. The computational challenge of conformant plan-
ning lies in the fact that the effects of a plan when executed
in one state may be different and highly undesirable when
the plan is executed in a different state. Thus one cannot

choose an action based on its desired effect given one pos-
sible initial state of the system (called aworld) without in
some way considering its unintended effects when it is exe-
cuted in all other possible initial states.

One approach to conformant planning has been to con-
sider the effects of each action under consideration across all
worlds simultaneously. TheCGP planner (Smith & Weld
1998) creates a GraphPlan-style planning graph (Blum &
Furst 1995) for each world and adds mutual exclusion con-
straints between them. When an action is selected for in-
clusion in the plan, its effects across all worlds are simulta-
neously captured by the multiple planning graphs.CMBP
(Cimatti & Roveri 2000) encodes the possible initial states
of the world into a binary decision diagram (BDD). A plan
action maps a BDD that represents a set of worlds onto a
new BDD that represents the outcome of the action on each
world in the initial BDD. Actions are applied to the initial
world BDD and all resulting BDDs until a BDD containing
only goal states is found. The path of actions leading to the
goal BDD is the conformant plan.GPT(Bonet & Geffner
2001) also considers how an action maps a set of possible
states onto a set of resulting states, but relies upon search
heuristics rather than compact state set encodings to achieve
efficiency. It uses A* search in the space of world sets rather
than breadth-first search as used byCMBP. An admissible
heuristic for the A* search is formed using a fully observ-
able version of the planning problem. Intuitively, the cost
of reaching a goal state from a set of states is approximated
by the maximum cost of reaching the goal state from any
state in the set.HSCP(Bertoli, Cimatti, & Roveri 2001)
is a successor to CMBP that uses both a compact, BDD
encoding of the belief state and a heuristic search. HSCP
searches backwards from the goal, attempting to find a set
of actions that lead to a belief state that contains the initial
states. Rather than an admissible heuristic, HSCP selects the
action that yields the belief state with the highest cardinality.
Intuitively, this action leads the largest number of states to
the goal given the plan constructed thus far.

Techniques with a generate and test flavor have also been
attempted. InC-PLAN (Castellini, Giunchiglia, & Tac-
chella 2001) a possible plan is a sequence of actions that
reaches the goal from at least one initial world. A valid plan
is a sequence of actions that achieves the goal from each
initial world, and for which every action’s preconditions are

Time Action
1 dunk p1
2 flush
3 dunk p2
4 flush
5 dunk p3
6 flush
7 dunk p4
8 flush
9 dunk p5
10 flush
11 dunk p6

Figure 1: Plan for Bomb In the Toilet with 6 Packages

met in each world. The valid conformant plans are thus a
subset of the possible plans. Intuitively,C-PLAN encodes
the planning domain and goal as a propositional formula and
allows a satisfiability procedure to choose an initial world
and possible plan for that world. The plan is then tested
for validity as a conformant plan. The main effort of this ap-
proach is in limiting the number of possible but invalid plans
the planner generates.

In this work, we take a different approach to conformant
planning in that we attempt find a plan that works in a sin-
gle world andextendit to work in all worlds. To illustrate
our approach, consider the bomb in the toilet problem (Mc-
Dermott 1987), an oft-used benchmark in the conformant
planning literature. In this domain, we are presented with
a set of packages. One of the packages contains a bomb.
In order to defuse the bomb, we must dunk it in a toilet.
Once a toilet has been used to dunk a package, it clogs and
must be flushed before another package can be dunked. Fig-
ure 1 illustrates a successful plan for the six package, one
toilet problem requiring 11 time steps, the minimal number.
Note that given 11 time steps there are711 possible action
sequences and6! conformant plans. Note also that the first
action of this conformant plan is itself a plan to achieve the
goal in the world wherein the bomb occupies p1. Similarly,
the conformant plan contains a one-step plan for every other
world. It also contains actions, in this case flushing the toi-
let, that reconcile the post-conditions of the plan for each
world with the preconditions for another world.

These characteristics are not specific to this particular
conformant plan or even this planning domain. By defi-
nition, if a conformant plan exists for a goal and a set of
worlds, then the conformant plan must contain a set of ac-
tions that achieve the goal in each individual world. This
property can be made more useful if stated slightly differ-
ently. If a conformant plan exists for a set of worlds, there
must exist some plan for each world that can be augmented
to form a conformant plan. In particular, we must add ac-
tions that achieve the goal in other worlds and ensure the
pre- and post- conditions of all actions are satisfied. This in-
sight forms the basis of our conformant planning approach,
which we refer to asfragment-basedconformant planning.

In fragment-based conformant planning, we choose a
world from the set of possible initial states and find a plan to
achieve the goal in that world. We refer to this single-world

plan as afragment, as it may be a fragment of a conformant
plan. We then choose a second world and plan. During this
second planning attempt, the planner is forced to include the
actions from the first fragment. In effect, we are attempting
to extend the initial fragment into a plan that is conformant
for both worlds. If we are successful for these two worlds
we try to expand the plan to a third world, and so on. If we
can find a plan for the final world that includes the fragments
found for all other worlds, we have a conformant plan. In-
terestingly, the plan assembled after considering only a frac-
tion of the worlds may be conformant. In this case, each
remaining planning attempt very quickly discovers the plan
succeeds in the next world and returns an empty fragment.

Note that while every conformant plan has a fragment for
each world, not every fragment for a world can be extended
into a conformant plan. The chosen fragment for achieving
the goal in one world may conflict with every fragment for
achieving the goal in a world that has not yet been consid-
ered. Numerous search strategies are possible. A simple
strategy is to perform complete backtracking on the possible
fragments of each world before backtracking to the previ-
ous world. Alternatively, we can use stochastic sampling
of the fragments for each world. In either case, the order
in which we select worlds is a consideration, since some
worlds may be tougher than others. We have implemented
a fragment based planner,fragPlanand have performed ex-
periments that compare different search strategies on prob-
lems with different structures. We have also comparedfrag-
Plan against other planners. The current implementation of
fragPlan is not as expressive as some of these planners, but
it is better adapted to finding partially conformant plans in
an anytime fashion. The planners are therefore compared
on the bomb in the toilet problem where their capabilities
clearly overlap. For this problem,fragPlan is competitive
with planners other than HSCP on serial problems and is
able to generate parallel plans that HSCP cannot.

The remainder of the paper is organized as follows. In
the next section, we describe the fragment-based conformant
planning approach. We then we discuss a variety of search
strategies for controlling a fragment-based planner. In the
following section, we discuss our implementation offrag-
Plan as a SAT-based planner, and we present the results on
problems from the conformant planning literature. Finally
we present areas for future research and conclusions.

The Fragment Planning Approach
In fragment-based conformant planning, we attempt to cre-
ate a plan that achieves the goal in all worlds by progres-
sively assembling plan fragments that achieve the goal in
each world. The approach is based upon the observation
that, by definition, a conformant plan achieves the goal in
all worlds and thus, for each world, must contain a set of
actions that achieves the goal. Intuitively, we can construct
a conformant plan by finding the appropriate fragment for
each world and assembling them. We will do this by finding
a plan for an initial world,wi, asserting this plan, referred
to as afragment, into the domain theory, then planning for
the next worldwj . Consider the following bomb in the toilet
example with three packages.

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6
Plan Forw1 Fragments forw2 Plan For{w1, w2} Extracted Fragment Fragments forw3 Plan For{w1, w2, w3}
1 dunk p1 1 dunk p1 1 dunk p1 1 1 dunk p1 1 dunk p1
2 2 2 2 2 2 flush
3 3 3 flush 3 3 3 dunk p3
4 4 4 4 4 4 flush
5 5 5 dunk p2 5 dunk p2 5 dunk p2 5 dunk p2

Figure 2: Generating A Plan for Defusing a Bomb in One of Three Routes

Example 1 We have three packages, p1, p2 and p3. To en-
sure none has a live bomb, each must be dunked in the toilet.
Figure 2 illustrates one possible assembly of fragments for
this example. In the figure, we refer to the world wherein
the bomb is in packagei as worldwi. Note in this example
we choose to use a planning style wherein plan actions are
assigned to fixed points in time, as is done in GraphPlan and
SATPlan (Kautz & Selman 1996) style planners. This is not
a requirement for fragment-based planning.

Column 1
In world w1, the bomb is in p1. We first create a plan for
w1, which is simply to dunk p1.

Column 2
We then use this plan forw1 as a fragment of the confor-
mant plan that must appear in all subsequent plans. This
determines the initial conditions for planning for the sec-
ond world,w2, where p2 has the bomb.

Column 3
We then plan for the situation wherein the bomb is in p2
and the first action of the plan must be to dunk p1. This
results in a plan that succeeds inw2. We then check that
the plan still achieves the goal inw1. In Column 3, we
now have a plan that achieves the goal in all worlds con-
sidered thus far. In the next column, we extract a fragment
for w2 from this plan.

Column 4
Conceptually, we can think of the plan in Column 3 as
consisting of the fragments that were required for previ-
ous worlds (here,dunk p1), a fragment required to achieve
the goal inw2 (here,dunk p2), and a set of repair actions
that allow these fragments to coexist (hereflush). In fact,
there are 11 sets of repair actions that allow the chosen
fragments forw1 andw2 to coexist1. Only four of these
allow us to later add a fragment forw3.
In order to avoid constraining all future plans to the extent
possible, we would like to avoid asserting into our frag-
ment set any repair actions that can easily be re-derived
later. Currently we use a simple procedure to remove re-
pair actions from a plan. We first remove the fragments
from previous worlds. They will be added back in in the
next step. We then perform a search that, givenw2, re-
moves any action whose post-conditions are true before it
is executed. This generally removes repair actions. If all
repair actions are not removed, we may simply encounter

1If we use only flushes, we can fit 8 variations in the three avail-
able time steps. To include a dunk, time 2 and time 4 must contain
flushes while time 3 can dunk of any of 3 packages.

proc simpleFragPlan(Domain, Remain, Done) {
selectω from Remain
Plan=plan(Domain,ω)
if (no Plan)

return Failed
if (Plan does not achieve goal inDone)

return Failed
if (Remain− ω = ∅)

return Plan
frag=ExtractFragment(Plan,ω)
return simpleFragPlan(Domain+frag,Remain − ω, Done+ω) }

Figure 3: Simple Fragment Planner

additional backtracking. In this example, the plan is re-
duced todunk p2.

Column 5
The fragment extracted from the plan forw2 is asserted
into the planning domain along with the fragment forw1.
Subsequent plans must include these fragments.

Column 6
Finally, we plan for the situation in which the bomb is in
p3, the first action must be to dunk p1 and the last action
must be to dunk p2. We find a fragment that achieves the
goal given the bomb is in p3 and choose a set of repair
actions that fit it within the fragments previously asserted
for w1 andw2. We now have a conformant plan.

Figure 3 illustrates a simple but incomplete fragment-based
planner to serve as a strawman. It produces plans in the man-
ner illustrated in Figure 2. We begin with a domain model
in Domain, the set of initial worlds inRemain, andDone
equal to the empty set. We select a worldω, and use a deter-
ministic planner to find a plan that succeeds inω. If no such
plan is found, or if the plan does not succeed in the worlds
we have previously considered, the procedure gives up. If a
suitable plan is found, it is reduced to the actions needed to
achieve the goal in worldω. The variable frag then contains
a plan that will achieve the goal in worldω. We must now
find a fragment for the next world given the fragments we
have found for the worlds selected thus far. This is accom-
plished with a recursive call that adds the current fragment
to the planning domain. This forces the next call to the plan-
ner to find a plan that integrates achievement of the goal in
the next world selected with the pre- or post- conditions of
the fragments that achieve the goal within the previously ex-
plored worlds.

As stated, the algorithm in Figure 3 does not do any back-
tracking. Unfortunately, not every plan for a single worldω

proc completePlan(Domain, Remain, Done) {
selectω from Remain
ChoosePlan from Plan(Domain, ω)
if (no Plan found)

return false
if (Plan satisfies all worlds inDone) {

if (Remain− ω=∅) {
report Plan as conformant plan
return true}

frag=ExtractFragment(Plan,ω);
return completePlan(Domain+frag,Remain-ω,Done+ω) }

return false}

Figure 4: A Recursive, Complete Fragment Planner

can be extended into a conformant plan over a set of worlds
that includesω. There are two ways that a set of fragments
might fail to extend into a conformant plan. First, it may be
the case that the fragment we arbitrarily choose for the cur-
rent world,wi, may be incompatible with all fragments for
achieving the goal in some subsequent worldwj . Second,
when we extend the fragment forwi to achieve the goal un-
derwj by choosing additional actions, there is no guarantee
the extended plan still accomplishes the goal when executed
in world wi. We must check the augmented plan inwi to
ensure it maintains this property. For either one of these fail-
ures, we will be forced to undo some subset of the existing
choices before any further progress can be made.

Figure 4 illustrates a complete, backtracking planner. In-
tuitively, a suitable fragment for a conformant plan is one
that results in a plan that satisfies the goal in the new world
ω plus all worlds considered thus far (the setDone), and
allows a suitable fragment to be found for the remaining
worlds (the setRemain). We initially call the planner with
Domain equal to the planning domain,Remain equal to
the initial world set, andDone empty. As the algorithm
recurs, an additional worldω is moved fromRemain to
Done, and the fragment that satisfies the goal in worldω and
does not disrupt the existing fragments forDone is added to
Domain. The non-deterministic operatorChooseensures
we eventually consider all fragments for a given world. This
is a backtrack point if the chosen fragment does not work
out. Consider the operation of the algorithm after some
number of worlds have have been added toDone and the
corresponding fragments added toDomain. If no plan can
be found for the next worldω, we must backtrack to the frag-
ment choice point at the previous recursion level. If a plan
is found and no worlds remain, we have found a conformant
plan. Otherwise, we extract from the plan a fragment that
represents the actions needed to achieve the goal inω and
add the fragment toDomain. We then attempt to complete
the conformant plan for the remaining worlds.

Note that the world ordering chosen bySelectand the or-
der fragments are chosen byChoosehave no impact on com-
pleteness in the procedure of Figure 4. However, they may
have a significant impact upon the amount of backtracking
that is performed. In Section 3, we discuss strategies for
these choices in the context of this complete planning algo-
rithm and an incomplete, randomized variation. Options for

implementingPlanare discussed in Section 4.
Finally, we have not yet discussed uncertainty in actions.

If we assume Plan returns only plans that achieve the goal
in world w under all possible non-deterministic executions,
two additional modifications of Figure 4 are necessary. First,
we must also check each possible execution of the plan in all
worlds that have previously been planned for. Second, when
extracting a fragment for a world from a plan, we can discard
an action only if it is not required by any non-deterministic
execution of the remaining fragment. Since our primary area
of concern is on-board spacecraft systems where actions are
considered deterministic, in the remainder of the paper we
will only consider uncertainty in the initial conditions.

Search Strategies
The complete planning algorithm of Figure 4 uses chrono-
logical backtracking. Figure 5 illustratesfragPlan, a
fragment-based planner with the flexibility to accommodate
a variety of search strategies, both complete and incomplete,
systematic or randomized. In particular, we consider incom-
plete, randomized search strategies, given their effectiveness
in comparison to systematic algorithms in many domains
(Gomeset al. 1998; Selman, Kautz, & Cohen 1996). In-
tuitively, we can think of planning with fragments as analo-
gous to a constraint satisfaction problem. We have a set of
variables (worlds) for which we must choose assignments
(fragments) so as to satisfy a set of constraints (the con-
formant planning domain and goal). Decisions about how
variables are ordered and which assignments are chosen will
directly impact how much backtracking will be required to
retract infeasible variable assignments and how quickly a so-
lution will be found. Therefore, each of our search strategies
will have to specify the following characteristics.

• Variable Ordering:In what order will the search consider
the worlds?

• Frustration Level: How many unsuccessful fragment
combinations will the search consider before backtrack-
ing to a previously considered world?

• Backtracking Distance:When the search backtracks, how
many fragment choice points will it backtrack over?

Note that in the complete case, either systematic or ran-
domized, the answers to these questions have no impact
upon completeness. All fragment sets will eventually be at-
tempted, and each conformant plan is one of those sets, so
ordering choices impact efficiency only. With an incomplete
planner, we explicitly assume only a portion of the possible
fragment sets will be considered. The order in which we
consider the worlds and fragment choices will have a signif-
icant impact upon which subsequent fragments are consid-
ered. The goal is to develop search strategies that consider
fragment sets where a conformant plan is likely to be found.

The algorithm of Figure 5 differs from the complete, sys-
tematic planner of Figure 4 in several respects. First, since
the search procedure will be examining and modifying the
world ordering, we store it in an explicit stack rather than
through recursion. Second, the search need not consider all

proc fragPlan(Domain, Worlds) {
selectω from Worlds
worldStack=empty
loop{

Plan=Plan(Domain,ω)
if (Plan6= ∅ & Plan satisfies all worlds on worldStack){

if (Worlds ⊆ worldStack)
return Plan

newFrag=ExtractFragment(Plan,ω)
Domain= Domain + newFrag
push(ω,worldStack)
selectω from Worlds }

if (Plan=∅ or Frustrated()){
// For each world removed from the stack, we must remove
// the corresponding fragment fromDomain
stack = adjustStack(worldStack,Domain,failures)
selectω from Worlds }
}

}

Figure 5: Flexibile Fragment Planner

fragments for a new world given a set of worlds and frag-
ments. Instead, the search gives up on the current fragment
choices and world selection whenever it becomes frustrated
with the number of fragments it has generated for the current
world without finding one consistent with fragments it pre-
viously chose. Third, when the search gives up, it may undo
as many previous world selections as desired and continue
the search from there. Finally, thePlan subroutine need
not be complete and may employ randomized search proce-
dures. This will be critical to the effectiveness of our search
procedures. We have investigated several search procedures
that make different choices for variable ordering, frustra-
tion level and backtracking distance. Of these, chronologi-
cal backtracking and two randomized searches that provided
interesting experimental results are described below.

Chronological Backtracking
In chronological backtracking, upon failure we undo the
last choice made and replace it with its successor until all
choices have been considered. To implement backtrack-
ing, Plan must be implemented such that successive calls
with the sameDomain andω return successive plans ac-
cording to some ordering, and Frustrated must always be
false. Thus,Plan will return plans given the current frag-
ments until all such plans have been exhausted. The ad-
justStack andSelectprocedure must then remove the last
world from the stack, along with its current choice of frag-
ment, and install it as the current worldω. We then re-
sume generating possible plans for the fragments associ-
ated with the worlds remaining on the stack. This strategy
considers every possible extension of the current fragment
set before reconsidering its previous choice. Consider the
situation of Figure 6. Suppose the first fragment chosen
was the actiondunk p2at time step 8. No conformant
plan can result from extending this fragment. However
the planner does not fail until it attempts to place the dunk
action for the sixth package, as illustrated in the figure.
The planner must then systematically rule out the expo-

Time Action
1 dunk p5
2 flush
3 dunk p4
4 flush
5 dunk p3
6 flush
7
8 dunk p2
9 flush
10
11 dunk p1

Figure 6: A Simple Fragment-based Plan That Failed

nential number of extensions of thedunk p2fragment be-
fore reconsidering that fragment.

Stochastic Probing (Langley 1992)
In this context, a probe consists of one selection of the
world order and a choice of fragment for each world. To
implement stochastic probing, we select a world at ran-
dom and use a randomized planner to find one possible
fragment. We subsequently select worlds randomly from
the set of unconsidered worlds, and find fragments that
are consistent with the existing fragment set. If we reach
a point where we cannot find the next fragment for the
world ordering, we throw out all fragments and the world
sequence and begin again. To implement this search strat-
egy, Selectmust randomly select a world that’s not on
the stack,Plan must be a randomized planner, Frustrated
must always be true, and adjustStack must completely
empty the world stack andDomain. We expect this strat-
egy to work well in situations similar to Figure 6 wherein
the problematic choice was made far back in the stack of
decisions, but is not detectable until much later.

Bubbling
Bubbling refers to the motion of worlds for which the
search is having difficulty finding a plan toward the top of
the stack. In bubbling,Plan is randomized and Frustrated
becomes true after some small, fixed number of planning
attempts. When the planner becomes frustrated in its at-
tempts to find a plan forω given all of the worlds on the
stack, adjustStack pops the last world off the stack. The
variableω is left with its selected value. Thus the search
continues for a fragment forω, but within the context of a
smaller set of worlds and associated fragments. This con-
tinues until we find a plan that satisfiesω and the stacked
worlds, or until the stack consists only ofω and we find
a plan for it. Intuitively, the problematic value forω bub-
bles up the stack until a fragment is found. The search
then returns to finding fragments for the worlds not on the
stack. We can refine the variable ordering strategy of bub-
bling to prefer that heavily constrained worlds are solved
first, in a manner analogous to squeaky-wheel optimiza-
tion(Joslin & Clements 1999). We approximate this by by
introducing a notion of difficulty. Each timePlan fails to
find a fragment, the difficulty of each world on the stack
is incremented. Afterω has been satisfied, we can select

the next world to attempt based upon this estimate of its
difficulty. We expect this search to do well in domains
where a small subset of the worlds are significantly more
difficult to satisfy than the remaining worlds.

Implementation Using a SAT Planner
The fragment-based approach does not require a specific
planning approach be used to implement the Plan procedure
that is used on individual worlds. It requires that we are able
to force the procedure to include actions for previous frag-
ments in its plan for the current world. Partial-order plan-
ners begin with an empty plan and add actions that link the
initial state to the goal state and remove conflicts between
actions. We can enforce the inclusion of fragments by ini-
tializing the procedure with a non-empty initial plan consist-
ing of the fragments. In GraphPlan-style planners, the back-
tracking search selects actions that lead from the goal back
to the initial conditions. At each level of this search, we can
simply force the search to include the appropriate fragment
actions in its set of actions. SAT-plan based procedures build
a propositional representation of the possible plans. We can
simply assert that the proposition corresponding to selecting
each fragment action must be true.

To implement our Plan procedure, we chose to work
within the framework of planning as propositional satisfia-
bility and chose Blackbox(Kautz & Selman 1999) as its ba-
sis. Blackbox compiles a planning domain into a Graphplan-
style plan graph(Blum & Furst 1995) then converts the
graph into a propositional formula that describes the plan-
ning problem. A satisfying assignment to the variables of
the formula corresponds to a plan. Blackbox then calls a
SAT procedure to find a satisfying assignment for the propo-
sitional formula. In order to represent uncertainty in the ini-
tial state of the world, we assume that the set of worlds can
be described by a vector of finite domain variables. For ex-
ample, in the bomb in the toilet domain, each member of the
vector represents the presence or absence of a bomb in one
package. Given the vector we can easily enumerate a desired
set of worlds, such as the case where at most one package
has a bomb or the case where any number of packages may
have bombs, by enumerating the corresponding assignments
to the vector. We consider the ramifications of a world being
the actual world by asserting the propositional representa-
tion of the corresponding vector assignment into the propo-
sitional planning representation. Blackbox then finds a plan
that achieves the goals given that the conditions of the world
are true. Note that we cannot create a conformant plan by
specifying the initial world as a disjunction of the possible
worlds, as a SAT solver will simply pick the most convenient
mixture of vector assignments from multiple worlds. Even
if the case where the vector is of length one, this would only
guarantee that there exists a world where the resulting plan
reaches the goal. We seek a plan that reaches the goal in
every world.

Representing the planning domain as a propositional for-
mula and planning in a single world as propositional sat-
isfiability has two advantages. First, we can employ fast,
randomized propositional satisfiability engines. Second, ad-
dition of fragments to the planning domain is trivial. We

simply assert that the propositional variable corresponding
to each action in the fragment must be true. The SAT pro-
cedure is then constrained to find only plans wherein those
actions are taken. Using the Blackbox style of propositional
encoding has two primary disadvantages, both of which in-
volve Blackbox’s use of a planning graph to generate the
encoding. First, each occurrence of an operator in the graph
is encoded with the point in time at which it appears in the
graph. Thus the planning process assigns actions to specific
points in time. Since we do not know how we will need
to extend the existing fragments, this is constraining. Con-
sider the bomb in the toilet plan generated in Figure 6. We
have considered worldsw1 throughw5 and have generated
a plan that is conformant for those worlds. It can be made
conformant forw6 simply by adding a dunk and flush ac-
tion before any dunk action. However, the way the planner
has laid out the actions for the first five worlds, the two re-
maining time steps are not adjacent, and the two necessary
actions cannot be inserted. The planner will have to back-
track, backjump or restart to remove the dunk action from
time 8. We could partially address this issue with an encod-
ing trick in the propositional representation that would al-
low us to move fragments so as to coalesce or create places
to insert actions. However, since the core issue is flexibil-
ity in ordering actions, it might be more fruitful to consider
mapping fragment-based planning into a partially-ordered
planning framework. This is beyond the scope of this pa-
per. Second, each occurrence of an action in the graph is
encoded with a distinct proposition for each possible instan-
tiation of its arguments and clauses that enforce its pre- and
post-conditions. Thus, actions with conditional effects can-
not be handled directly. In deterministic domains, condi-
tional effects can be represented in Graphplan by splitting
each operator and allowing the planner to choose the opera-
tor that represents the appropriate conditional effect (Gazen
& Knoblock 1997). Intuitively, this approach does not work
in the conformant planning case, as the correct action to rep-
resent a conditional effect may depend upon the world being
considered. This can be addressed by producing a SAT en-
coding of the plan operators without the intermediate plan-
ning graph. This is also beyond the scope of this paper.

Experimental Results
The planning system described has been implemented in
C++, making use of existing functionality from Blackbox,
satz (LI & Anbulagan 1997), and Graphplan. We illustrate
operation of the planner on variations of the bomb in the toi-
let problem, a simplification of the RING domain2 (Cimatti
& Roveri 2000) and a conformant logistics problem wherein
packages must be delivered via a set of roads that might con-
tain mines. In the first subsection below, we compare per-
formance of thefragPlanon the bomb in the toilet problem
against planners from the literature. In the next subsection,
we illustrate scalability as the number of possible worlds in-
creases. Finally, we illustrate how the performance of dif-

2The full ring domain requires actions with conditional effects
which, as noted above, our implementation currently does not sup-
port.

ferent search strategies varies with the domain.

Performance Comparison on the BTC Domain
The bomb in the toilet domain with clogging, orBTC, is a
conformant planning benchmark for which performance in-
formation is available for many planners. For convenience,
we comparefragPlan’s performance on this problem with
the fastest planner, HSCP (Bertoli, Cimatti, & Roveri 2001),
after making comparisons with three other planners. Fig-
ure 7 illustrates performance of these planners on variations
of the BTC problem. The first two columns list the num-
ber of packages and toilets in the problem. The third col-
umn lists the minimum number of time steps in a confor-
mant plan for planners that consider a single action at a
time. The fourth column lists the minimum number of time
steps required for planners that allow parallel actions. The
next three columns of the table show results for three plan-
ners from the literature. GPT (Bonet & Geffner 2001) is
a planner that uses A* search and dynamic programming
to solve conformant, contingent and probabilistic planning
problems. CMBP (Cimatti & Roveri 2000) is a conformant
planner that uses binary decision diagrams (BDD) to repre-
sent the outcome of candidate actions in all worlds simul-
taneously. The GPT and CMBP planners consider serial
actions only. C-plan (Castellini, Giunchiglia, & Tacchella
2001) is a conformant planner that, likefragPlan, uses a
propositional representation that allows parallel actions. It
generates possible plans that may be conformant and tests
whether each is in fact conformant. The second column un-
derC-plan lists the number of possible plans that are tested
for each problem. Figures from these planners were taken
from (Castellini, Giunchiglia, & Tacchella 2001) and were
generated on an 850Mhz Pentium III PC running Linux. The
final two columns illustrate the performance offragPlanus-
ing stochastic probing as the search strategy. The first col-
umn lists the time to solve the problem. Since we are using
a randomized procedure, timing figures are averages over
thirty runs. The next column shows the average number of
calls to thePlanprocedure to find a fragment.FragPlanwas
run on a 733Mhz Pentium III PC running Windows NT with
256M of memory. Relative to these experimental runs, we
have made several observations.

Observation 1 On serial BTC problems,fragPlanis com-
petitive with GPT and CMBP and dominates C-Plan.

Consider the first three rows of the table which represent
problems with multiple packages and one toilet,{6-1, 8-1,
10-1}. These are completely serial problems, in that there
is a single toilet, and only one package can be dunked at a
time. The task for thefragPlan is to order the dunking frag-
ments such that the final plan alternates dunking and flushing
within the minimal number of time steps. In the six pack-
age problem, probing generates an average of 15.42 calls
to Plan rather than the minimal 6. This indicates there is
some amount of misplacement of fragments which is being
addressed by restarting the algorithm. As we increase the
number of steps by increasing the number of packages, the
amount of restarting required increases. This is intuitive, as
there are more opportunities for fragments to be misplaced.

However, the number of fragments generated and the diffi-
culty of finding those fragments, as judged by the total run-
time of the algorithm, appear to combine to scale at approxi-
mately the same rate as problem complexity in the GPT and
CMBP planners. Here,C-plan appears to be at a severe dis-
advantage. Conceptually, in order to find a plan of lengthn,
C-plan tests every possible plan of length less thann as well
as every possible plan of lengthn. C-plan adopts several
strategies to reduce the number of possible plans it consid-
ers but the number remains considerable.

Observation 2 On parallel BTC problems,fragPlandomi-
nates CMBP, GPT, and C-Plan

Consider for example the performance of CMBP on the
problems with ten packages. CMBP encodes the set of ini-
tial states of the world in a BDD, then considers the outcome
of the possible actions on each world in the set. The result
of the action on each possible world is a set of worlds that is
also encoded in a BDD. When each world in a BDD satisfies
the goal, a plan has been found. As the number of toilets in-
creases, so does the number of actions that must be applied
to each BDD. The search branching factor in the 10 toilet
problem is 10 times larger than in the 1 toilet problem, while
the search depth is only cut in half since CMBP does not
consider parallel actions. This leads to an explosion in the
number of BDD’s that CMBP must generate. Thus, when
we increase the 10 package problem from 1 to 5 toilets, exe-
cution time increases from 1.55 seconds to 974.55 seconds.
With 10 toilets, the problem could not be executed in 512M
of memory. In the case of GPT, we are not certain of the
exact mechanism by which the memory limit is exhausted
on the larger multiple-toilet examples. We suspect it is a
similar explosion in the number of possible partial plans and
resulting states of the world it must keep on its agenda as it
performs an A* search over action sequences.C-plan con-
siders almost twice as many possible plans for the 6 package,
5 toilet problem as when only 1 toilet is available. This sug-
gests the moderate reduction in parallel time steps allowed
in the 5 toilet problem does not offset the additional action
choices. However, in the last three rows wherein the paral-
lelism is sufficient to reduce the number of planning steps to
one,C-plan does exceedingly well. The first and only pos-
sible plan it generates dunks all packages simultaneously,
which is a valid conformant plan. In contrast, the execu-
tion time forfragPlan decreasesdramatically as the number
of toilets increases.FragPlan is attempting to assemble the
fragments necessary to achieve the goal in each world along
with the necessary inter-fragment repair actions, within the
allotted number of time steps. Allowing parallel actions sig-
nificantly simplifies the problem of aligning the necessary
fragments to the appropriate time steps.

Observation 3 HSCP dominates except on parallel plans

HSCP is an impressive successor to CMBP that uses a
heuristic to control the actions considered during search.
Simply put, fragPlan is competitive with CMBP while
HSCP is two orders of magnitude faster(Bertoli, Cimatti, &
Roveri 2001). One exception is parallel plans. Like CMBP,
HSCP cannot generate parallel plans in domains where they

Problem Instance Time Steps GTP 850Mhz CMBP 850Mhz CPlan 850Mhz fragPlan733Mhz
| P | | T | Serial Parallel Time Time Time Plans Time Calls toPlan

6 1 11 11 0.08 0.04 221.55 52561 0.07 15.42
8 1 15 15 0.41 0.20 TIME - 0.54 54.7
10 1 19 19 2.67 1.55 TIME - 2.26 115.45
6 5 7 3 3.29 16.80 419.53 98348 0.16 6
8 5 11 3 32.07 112.48 TIME - 0.31 8
10 5 15 3 MEM 974.55 TIME - 0.58 10
6 10 6 1 74.15 MEM 0.01 1 0.10 6
8 10 8 1 MEM MEM 0.01 1 0.16 8
10 10 10 1 MEM MEM 0.04 1 0.26 10

Figure 7: Bomb in the Toilet Problem. MEM = Planner requires> 512M memory. TIME = Planner requires> 1200 seconds.

0.1

1

10

1 2 3 4 5 6 7 8 9 10
Toilets

R
el

at
iv

e
R

u
n

 T
im

e

HSCP

fragPlan

Figure 8: Relative Time Growth versus Parallelism

are required, but will produce serialized plans. Figure 8
shows the growth in runtime forfragPlanand HSCP and on
the 10 package problem as the number of toilets increases.
FragPlangains an order of magnitude in performance with
10 toilets, requiring 0.26s. HSCP drops an order by 6 toilets,
for a comparable time of 0.01s on a 300Mhz machine.

Performance with an exponential set of worlds

A common criticism of planners that explicitly enumerate
worlds is that there may be be exponential number of such
worlds. In the BTC domain, a problem ofn packages has2n

worlds if we allow that every package may contain a bomb.
In the modified RING domain, MRING, a maze containsn
rooms. Each room has a window that may be open, closed
or locked, yielding3n worlds. The goal of MRING is for
all windows to be locked, and a robot placed at a known
location may close or lock the window in the current room,
or move to the next room. Thus the maximum number of
worlds is dictated by the number of bombs in BTC and the
number of unlocked or open windows in MRING. We have
performed a number of experiments that vary the number
of worlds in the BTC and MRING domains and make the
following observations.

Observation 4 The representation size is constant

Unlike planners such as CGP, fragPlan does not duplicate
its planning representation for each world. The propositions
capturing each world (e.g.,whether or not packagei has a
bomb) are asserted into the representation in turn. Thus
the memory required by fragPlan is dominated by its single
world Blackbox representation and does not increase during
search. For problems where the worlds are combinations of
a fixed number of properties, the only increase in memory to

3.087

1.418
1.112

31.64

4.75

2.93
2.33

1

10

100

0 50 100 150 200 250Worlds

It
er

at
io

n
s/

W
o

rl
d

s
R

at
io

BTC 10-1 MRING 5

Figure 9: Effect of Worlds on Iterations Per World

consider additional worlds is a few bytes per world to repre-
sent the corresponding fragment.

Observation 5 PlanCalls Approach The Number of Worlds

As the number of possible worlds increases for a domain,
there tends to be a great deal of overlap between worlds - that
is, conformant plans for some of the worlds will also be con-
formant plans for other worlds. For example, any fragment
that solves the BTC world where an entire set of packages
have bombs, is a conformant plan for worlds where any sub-
set of those packages have bombs. Similarly for the Ring do-
main - a fragment that solves the world where a set of rooms
have open windows will be a conformant plan for worlds
where any subset of those rooms have open windows3. As a
result, even though the number of possible worlds is grow-
ing exponentially with the number of independent sources
of uncertainty, the planner tends to discover a conformant
plan after considering only a few of these worlds. This ob-
servation is confirmed by Figure 9, which shows the ratio of
plan calls required for the BTC problem with 10 packages
and MRING problem with 5 rooms as the number of possi-
ble worlds increases. For all domains that we have tested,
this ratio approaches 1 as the amount of uncertainty in the
domain is increased.

In other words, for most of the worlds, the planner is
just verifying that the current plan works on the current
world. We note that this verification problem is polyno-
mial, whereas the planning problem for a single world is

3This characteristic is not limited to artificial domains such as
BTC and Ring. Consider a problem where there are N candidate
faults in a spacecraft, and one must plan to achieve a goal. Plans
for worlds in which several of the faults are present typically work
for worlds in which a subset of those faults are present.

0

5

10

15

20

0 50 100 150 200 250 300

Worlds

S
ea

rc
h

 T
im

e
(s

ec
)

BTC 10-1 MRING 5

Figure 10: Effect of Worlds on Search Time

NP-complete. As a result, there is no a priori reason to ex-
pect that verification on an exponential number of worlds
is computationally worse than planning on a single world.
However, our current implementation does not take advan-
tage of the polynomial nature of verification. As shown in
Figure 10, we do see growth in search time as the number of
worlds increases, but this growth is very slow.

Comparison of Search Strategies for FragPlan
Of the several search strategies we implemented for Frag-
Plan, our experiments yielded the most interesting results
for stochastic probing and bubbling. Stochastic probing in
essence selects a world ordering, chooses a fragment for
each world, and restarts as soon as a suitable fragment can-
not be found. Bubbling attempts to solve the most difficult
worlds first, then add back in worlds that appear increas-
ingly difficult. In general in all of our experiments, it did not
prove easy to beat stochastic probing by a significant mar-
gin. In cases where the initial worlds displayed significant
differences in difficulty, bubbling was able to best probing
by a small multiple in performance. The details of these ex-
periments and further performance insights are given below.

Observation 6 Stochastic Probing Dominates on BTC

A fragment set may fail to extend into a conformant plan
because of a global property of the partial plan rather than
a property of any particular fragment. In these cases, we
expect bubbling’s attempt to solve the most difficult worlds
first based upon plan failures will not to lead to a conformant
plan. As illustrated in Figure 6, the BTC problem has this
property. When the fragment for the final worldwj cannot
be placed, it is because of the placement of all of the existing
fragments. Bubbling removes the fragment for the previous
world considered,wi. This allows the fragment forwj to
replace the fragment forwi. The roles then reverse, mak-
ing bubbling completely ineffective on the BTC problem.
Outfitting bubbling with a random restart or asserting pre-
viously attempted fragment sets as nogoods would prevent
this type of cycle from developing. More generally, locally
re-ordering the worlds does not guarantee a plan.

Observation 7 Bubbling Dominates on Asymmetric Worlds

In order to further compare search strategies, we defined a
logistics problem with uncertainty in its initial conditions.
We used this problem to investigate the advantage of probing
on problems where a small subset of the worlds are more
difficult to plan for than the rest.

Relevant Irrelevant Average Calls toPlan
Worlds Mines Worlds Probing Bubbling
6 8 in w1 5 33.52 11.39
6 4 each inw1, w2 4 44.81 12.61
70 1 each inw1 − w5 65 510.83 128.93

Figure 11: Probing vs. Bubbling on Asymmetric Worlds

Example 2 Consider the problem of delivering relief pack-
ages to refugee camps. A depot with packages is located
in one location and a number of camps are at distinct loca-
tions. Two locations may be connected by an incoming and
an outgoing route. One delivery truck and one minesweeper
are available. A subset of the routes may be mined.

A plan for this problem must run the minesweeper between
the truck’s initial location and the depot, drive the truck to
the depot, load the truck, and so on. Figure 11 illustrates
performance on three cases of this problem. In each prob-
lem, five camps require packages and one does not. The first
column specifies the number of worlds, where a world is an
assignment of mines to routes. In order to create structure
in the worlds, not all worlds specify that routes needed to
achieve the goal are mined. In the second column worldw1

represents the belief that 8 relevant routes are mined. In the
remaining worlds, specified in the third column, the mines
are on routes irrelevant to the goal. The final row is an ex-
aggerated case wherein 65 worlds specify mines on a route
that is not needed in the plan, and camps are in a linear ar-
rangement that maximizes the number of mines that must be
cleared in order to reach the most difficult (farthest) camp.
This problem is particularly suited for bubbling, as we must
clear the mine on the first route before considering driving to
the second route and clearing it. The fourth column denotes
the average number of calls toPlan that are made before
finding a conformant plan, averaged over 30 plans. While
probing does not perform as well as bubbling, even on the
extreme case wherein 5 of 70 worlds must be considered in
order, it does not do as poorly as we expected. The next
observation provides further insight into this behavior.

Observation 8 Lazy Conformance

Given the number of worlds in Figure 11, we were surprised
that probing did not perform significantly worse. We discov-
ered that plans for worldwi returned byPlan often work in
some other worldwj . We think of this aslazy conformance.
Our SAT encoding specifies the impact of every world upon
reaching the goal, even though only one world is asserted
when planning. We believe this biases the heuristics of the
SAT procedure to activate actions that remove threats to the
goal under fromwj when finding a plan forwi. Intuitively,
the heuristics of the SAT procedure see a threat to a pre-
condition of the goal without seeing that the threat is only
entailed ifwj is asserted. Even ifextractFragmentremoves
the extra actions for worldwj from the fragment inserted
into the planning domain, they ensure that there is space for
such actions to be easily added whenwj is considered. The
result is that in this domain fragment-based planning is less
sensitive to irrelevant worlds, fragment placement and world
ordering than we would have expected.

0

20

40

60

80

100

120

140

19 20 21 23 24 25 26 29 35 39 50

Time Steps

C
al

ls
 t

o
 P

la
n

0

0.5

1

1.5

2

2.5

R
u

n
 T

im
e

(s
ec

o
n

d
s)

Calls to Plan Run time

Figure 12: Effect of Time Steps on fragPlan

Observation 9 Probing improves with longer horizons

When we use a randomized search within fragPlan, we ex-
pect performance to be more sensitive to how tightly the
fragments constrain each other than by the total number of
action sequences. Figure 12 illustrates the performance on
BTC with 10 packages and 1 toilet as the planning hori-
zon expands from 19 steps to 50. Note the calls toPlan
decrease to the minimum of one per world while the num-
ber of action sequences increases exponentially. Intuitively,
placing 10 dunk fragments becomes significantly easier with
a few steps of slack. Eventually, the penalty for manip-
ulating a larger representation outweighs the reduction in
search. However, even at 50 steps performance is good.
We have documented this phenomenon on all domains we
considered. For control applications where some plan must
be found, this suggests quickly generating a plan given a
conservative planning horizon then iteratively shortening the
horizon to find shorter plans in the time that remains.

Future Work and Conclusions
As we noted earlier, when there are many independent
sources of uncertainty and consequently many possible
worlds, it is usually the case that there are a small number
of worlds that are sufficient for finding a conformant plan.
For example, in the RING domain it is sufficient to solve the
problem where all windows are open. Likewise in diagno-
sis a plan that corrects the simultaneous occurrence of every
failure is often a plan that corrects any failure. Of course,
this is not guaranteed to yield a conformant plan. For exam-
ple, if either of a pair of redundant devices is failed, a plan is
possible, but no plan is possible if both are failed. This sug-
gests future work on search heuristics that attempt to find or
construct worlds for which the plan is the conformant plan.

In this paper we have described a conformant planning
method that attempts to incrementally grow the set of worlds
in which a plan is valid. The capabilities of this approach
are different than other conformant planners in order to ad-
dress a different set of problems. For non-artificial planning
problems, no conformant plan may exist or we may not be
able to find one before we are required to act. In both cases,
conformant planners return no plan.FragPlancan be inter-
rupted at any point and return the most conformant plan it
has generated thus far.FragPlan is a subroutine ofSCOPE,
the Safe, Conformant, Optimizing Planning Engine(Kurien,
Nayak, & Smith 2002). Motivated by our experience with
autonomous systems, SCOPE finds plans that are pareto op-

timal in terms the number of worlds in which a single goal
is met (conformancy), the number of goals of achievement
met across all worlds (expected performance) or the number
goals of maintenance respected across all worlds (safety).

We have described how the fragment planning method
can be implemented to take advantage of many different de-
terministic planning technologies and search strategies. We
have also shown that the search is not as sensitive to growth
in the number of worlds as previous possible worlds ap-
proaches such as CGP.FragPlan is competitive with CMBP
on problems within its current expressive power, but is out-
performed by HSCP. However, if parallel plans are required,
HSCP, CMBP and GPT are not applicable, andFragPlan
dominates.FragPlandoes not currently handle actions with
uncertain or conditional outcomes as HSCP, CMBP and
GPT are able. In exchange, it is better adapted when the
existence of a conformant plan, minimal planning horizon
or time available for planning time are not known a priori.

References
Bertoli, P.; Cimatti, A.; and Roveri, M. 2001. Heuristic search
+ symbolic model checking = efficient conformant planning. In
Procs. IJCAI-01.

Blum, A. L., and Furst, M. L. 1995. Fast planning through plan-
ning graph analysis. InProceedings of IJCAI-95, 1636–1642.

Bonet, B., and Geffner, H. 2001. Gpt: A tool for planning with
uncertainty and partial information. InWorkshop on Planning
with Uncertainty and Partial Information,IJCAI-2001.

Castellini, C.; Giunchiglia, E.; and Tacchella, A. 2001. Improve-
ments to sat-based conformant planning. InECP2001.

Cimatti, A., and Roveri, M. 2000. Conformant planning via sym-
bolic model checking. InJAIR, volume 13, 303–338.

Gazen, B. C., and Knoblock, C. A. 1997. Combining the ex-
pressivity of UCPOP with the efficiency of graphplan. InECP,
221–233.

Gomes, C. P.; Selman, B.; McAloon, K.; and Tretkoff, C. 1998.
Randomization in backtrack search: Exploiting heavy-tailed pro-
files for solving hard scheduling problems. InProcs. AIPS-98,
208–213.

Joslin, D. E., and Clements, D. P. 1999. Squeaky wheel optimiza-
tion. JAIR10.

Kautz, H., and Selman, B. 1996. Pushing the envelope: Planning,
propositional logic, and stochastic search. InProcs. AAAI-96.

Kautz, H., and Selman, B. 1999. Unifying sat-based and graph-
based planning. InProcs. IJCAI-98.

Kurien, J.; Nayak, P. P.; and Smith, D. E. 2002. Maximizing
safety and achievement under time constraints. In preparation.

Langley, P. 1992. Systematic and nonsystematic search strategies.
In Procs. AIPS-92, 145–152.

LI, C. M., and Anbulagan. 1997. Heuristics based on unit propa-
gation for satisfiability problems. InProcs. IJCAI-97, 366–371.

McDermott, D. 1987. A critique of pure reason.Computational
Intelligence3:151–160.

Selman, B.; Kautz, H.; and Cohen, B. 1996. Local search strate-
gies for satisfiability testing.DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science26.

Smith, D. E., and Weld, D. S. 1998. Conformant graphplan. In
Proceedings of AAAI-98.

